
International Journal of Scientific & Engineering Research Volume 11, Issue 6, June-2020 457

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

A NOVEL APPROACH FOR CONSTRUCTING
BINARY TREE FROM INORDER TRAVERSAL

Teshome Fenta , Lamesginew Andargie , Gizachew Melkamu

Abstract— A data structure is helpful for storing and organizing data within a computer system so that it can be accessed and worked with in appropri-
ate ways. One of a data structure is a tree, a graph in which every node (except root) has only one parent. One application of a binary tree, a tree when
each node has at most two child, is to develop a binary expression tree for mathematical expressions. In this paper, we develop a new algorithm which
converts directly a given mathematical expression (infix form) to a binary expression tree without intermediate prefix or postfix forms. We also try to show
how this algorithms works using example.

Index Terms— binary expression tree, binary tree, tree traversal

——————————  ——————————

1 INTRODUCTION

n the field of computer science, there is basic thing called

data which is going to be stored in the computer system.

Group of the same or different data elements that can

have the same or different size, also called members, together

under common name is the main concern of data structure.

Hence, storing and organizing this data in a certain manner in

a data structure helps us to manage and use it efficiently with-

in the computer system. Items found in a data structure are

stored in memory, and to manipulate these data by the soft-

ware, different operations are provided like add, insert re-

move and others. Between and/or among data items in a data

structure, there is a relationship.

In addition, data structures can provide means for efficient

management of large sized data, like large databases. Fur-

thermore, efficient algorithms are designed from efficient data

structures. In a software design, instead of emphasizing on

the design methods of algorithms, they are focusing on de-

sign methods of efficient data structures [2].

There are different data structure types described in differ-

ent literature. To mention some of them, are arrays, linked

lists, stacks, queues, graphs, trees and others. As stated in

[1, 5], set of same type of objects arranged nearby in a com-

puter memory can be taken as array. Composite data con-

sisting many similar and individual items like list of names,

bank transactions, city temperature values and others are

best candidates to be represented by arrays. Each object

constituting the array can be accessed by the position within

the array called index.

Accordingly, a linked list is one where each data item points

to its neighbors. Like array, in list also there are different ob-

jects constituting the list. But, in contrary to array, each ele-

ment within the list has its own memory block, but in array

one block of memory is allocated for all elements of the array.

Linked lists are made up of nodes, and each node in a list con-

tains a reference to the next node [1].

The other data structures are stacks and queues. As [10] states

that, a stack is a data structure in which operations like storing

and retrieving data is performed in only its top end. The last

element inserted to a stack is the first it is to be removed, and

hence stack is a LIFO (Last In First Out) structure. Unlike

I

 Teshome Fenta Bitew received his B.Sc. Degree in Information Studies from Jim-
ma University, Ethiopia in 2010 and his M.Sc. in Information System in 2015,
form the School of Electrical Engineering and Computing from Adama Science
and Technology University, Ethiopia. He is now a Lecturer in Debre Markos
University, Ethiopia since 2012. His main research interests are Image Pro-
cessing, Machine Learning, Data Science, Security and Privacy, Natural Lan-
guage Processing and Cloud Computing. He is a member of professional society
like Ethiopian Space Science Society (ESSS).E-mail: algewg@gmail.com

 Lamesginew Andargie Alamirew received his B.Sc. degree in Computer Science &
IT from Adama Science and Technology University in 2009, and his M.Sc. in
Computer Science Bahir Dar Institute of Technology in 2015, Ethiopia. His main
research interest are Data Structures and Algorithms, Big data analytics, Ma-
chine learning, Deep learning and Image Processing. He has got 10 years of teach-
ing experience. He has published 3 research papers in various international jour-
nals.E-mail: lame2002@gmail.com

 Gizachew Melkamu Molla received his B.Sc. Degree in Computer Science from
University of Gondar in 2009 and his M.Sc. in Computer Science in 2015, form
School of Computing, IOT, Bahir Dar University, Ethiopia. He is now a Lecturer
in Debre Markos University since 2012. His main research interest is Algo-
rithms, Cryptography, Data Mining and Cloud Computing. He is a member of
professional society like SDIWC.E-mail: gizlove@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 6, June-2020 458

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

stack, in a queue, operations are performed at different sides

of the queue. Removing elements is done at the front side and

adding elements is done at the end of the queue. The element

inserted lastly has to wait until all objects before it on the giv-

en queue are removed. Hence, a queue is an FIFO (First In

First Out) structure.

2 RELATED REVIEW

One can define tree as a connected graph with no cycles. In

another words, it is a graph in which each child has only one

parent except the root node. It is a set of vertices (also called

nodes) and edges (or lines) in which there is only one path

between any two vertices. Rooted tree has the following struc-

ture: (a) One node distinguished as root which is drawn at the

top, (b) every node except the root is connected with other

some node by an edge, (c) All nodes are connected with the

root, and there is a unique path from the root to the each node.

In [3, 4, 12], there is a tree in which each node has at most two

children (left child and right child) which is termed as binary

tree. As stated there, it is different recursively as either empty

or consists of a root, a left tree, and a right tree. The left and

right trees in a binary tree may be empty, hence a node with

one child could have a left or a right child in such tree type.

Binary tree has different applications. Some of these applica-

tions are stated in papers [3, 6, 12]. In [3], binary search algo-

rithm is implementing for data access by the aid of binary

trees. Also in [6, 12], operating system files are keeping in trees

and/or tree like structures. A binary tree is applicable in com-

piler design for constructing syntax tree to parse expressions.

In addition, it is useful in text processing, searching algo-

rithms and evaluating mathematical expressions.

In representing mathematical expression by binary trees, we

store values of the expression on leaf nodes and operators on

internal nodes of the tree. There are three mechanisms for

traversing this tree, namely inorder, preorder and postorder

traversals. The traversing methods for these mechanisms is

described papers [1, 7, 9], stated as follows.

In preorder traversal method, first visit a parent node, fol-

lowed by visiting left child/subtree, and finally traversing

right child/subtree. In case of inorder traversal method, we

first traverse the left child, then traversing the parent node,

and then traversing right child. Where as in postorder tra-

versal, left subtree is firstly visited, next right subtree is trav-

ersed, finally visit the parent node is done.

Paper [12] presents a way to construct a binary search tree

from a given traverse. It proposes an algorithm that can con-

struct the binary search tree from only preorder traversal. This

algorithm is not working for mathematical expressions, rather

it considers all nodes of the tree as numeral values only. And,

in a binary search tree, values of nodes in left tree and/or sub-

tree is always less or equal than the value at the root node; and

values of the right subtree is greater or equal to the root node.

Also paper [5], presents algorithm to construct a binary tree

from its inorder and preorder traversals. Given these two tra-

versals of a tree and assuming that a tree is labeled with sym-

bols from an ordered alphabet, then it proposes algorithm to

construct a binary tree. Like that of [12], it doesn’t consider for

mathematical expressions containing operators and operands.

[11] Presents a detail, clear step and procedure of shunting-

yard algorithm [8]. Shunting-yard algorithm is used for pars-

ing mathematical expressions given in infix notation. It is also

helpful for changing the infix mathematical notations to their

corresponding prefix notations.

3 PROPOSED METHOD

The different traversal methods discussed above are used for

generating different notations of mathematical expressions.

The preorder traversal method is used to generate mathemati-

cal expression in prefix notation. That of inorder traversal

method is used to generate mathematical expression in infix

notation. And, postorder traversal is used to generate mathe-

matical expression in postfix notation. When a mathematical

expression is represented using binary tree, then operands

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 6, June-2020 459

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

goes to leaf nodes and that of operands are placed at internal

nodes.

Under this section, we are going to present the details of our

proposed method that can directly construct a binary of math-

ematical expressions without changing the expression to an-

other notations like preorder or postorder notations. For our

algorithm, two stacks, one for holding operands and another

for holding operators are needed. The details of the algorithm

is presenting below.

= = = = = = = = = = = = = = = = = = = == = = = = = = = = = = = =

 Initialize operand and operator stacks to empty.

While there is more token in the expression, do the following.

1. Read next token from the expression if there exists.

1.1. If it is operand

 Push to a stack (operand stack)

 If it is not the last operand in the expression, go

back to step 1, else go to step 3.

1.2. If it is operator, push to a stack (operator stack).

2. If operator stack is not empty and top of operator stack is

not ‘(‘, do the following.

 Pop operator from operator stack if it is not ‘)’.

2.1. If there is no root/internal node created with at least

one leaf node, then do the following.

 Make root node with this operator.

 Pop operand from operand stack and make it as left

child of root node.

 Go to step 1 of this algorithm.

2.2. If top of operator stack is ‘(‘, do the following.

2.2.1. If its precedence is less than previously cre-

ated internal node, then do the following.

 Make it as right child of previously created in-

ternal node.

 Pop operand from operand stack and make it

left child of the new internal node.

 Go to step 1 of this algorithm.

2.2.2. Otherwise, go to step 2.5

2.3. If top of operator stack is ‘)’ and operand stack is not

empty, do the following.

 Pop operand from operand stack & make right

child for newly created internal node.

 Go to step 1 of this algorithm.

2.4. If top of operator stack is ‘)’ and operand stack is

empty, do the following.

2.4.1. If there exists only one internal node (root on-

ly) in the tree, do the following.

 If its precedence is greater than that of root

node, do the following.

o Make new root node with this operator.

o Make the previous root node as left child

of the new root node.

o Go to step 1 of this algorithm.

 Otherwise, go to step 2.5

2.4.2. Otherwise, do the following.

 If its precedence is less than that of root

node, do the following.

o Make new root node with this operator.

o Make the previous root node as left child of

the new root node.

o Pop matching operators ‘(‘and ‘)’ from op-

erator stack and delete them from the op-

erator stack.

o Go to step 1 of this algorithm.

 If its precedence is greater than parent of

previously created node, do the following.

o Create new internal node with this operator

and make it as new right child for parent of

previously created internal node.

o Make previously created internal node as

left child of this new internal node.

o Pop matching operators ‘(‘and ‘)’ from op-

erator stack and delete them from the op-

erator stack.

o Go to step 1 of this algorithm.

2.5. Otherwise, do the following.

2.5.1. If root node has no right child and operator

precedence is greater than that of operator at

root node, do the following.

 Make this operator as right child of root and

also internal node of the tree.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 6, June-2020 460

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

 Pop operand from operand stack & make it

as left child of this new internal node.

 Go to step 1 of this algorithm.

2.5.2. If root node has no right child and operator

precedence is less or equal to the operator at

root node, do the following.

 Make new root node with this operator.

 Make the previous root node as left child of

the new root node.

 If operand stack is not empty, pop operand

and make it as right child for the internal or

root node created before this new root

node.

 Go to step 1 of this algorithm.

2.5.3. If its precedence is greater than parent of pre-

viously created node, and less or equal to pre-

viously created internal node, do the following.

 Pop operand and make right child for previ-

ously created internal node.

 Create new internal node with this operator,

and then do the following.

o Make this new internal node as right child

for parent of previously created node.

o Make the previous right child of the parent

together with its right child as left child of

this new internal node.

o Go to step 1 of this algorithm.

2.5.4. If its precedence is greater than both parent of

previously created node and previously created

internal node itself, then do the following.

 Create internal node and make it as right

of the previous internal node.

 If operand stack is not empty, pop oper-

and and make left child of the new inter-

nal node.

 Go to step 1 of this algorithm.

3. If token is the last in the expression

3.1. If operand stack is not empty

 Pop operand from operand stack

 Make right child for the latest & previous inter-

nal/root node created.

4 RESULTS AND DISCUSSION OF THE STUDY
Different operator types might exist in mathematical expres-

sion. Different operators, their descriptions, precedence and

their associative is stated in paper [1, 9]. Among these opera-

tors, some of them that might work in the above are the fol-

lowing.

TABLE 1: OPERATORS: PRECEDENCE AND ASSOCIATIVITY

To have a better understanding of the proposed algorithm for

converting mathematical expressions to expression tree, let us

have a look using example.

Given an expression: a - b != d % (c + b) && a * d / b , then

find an expression tree for this expression.

Precedence Operator Description Associativity

1 * / % Multiplication, division,

and remainder

Left to right

2 + − Addition and subtraction

3 << >> Bitwise operator : left

shift and right shift

4 < <= Relational operators: <

and ≤

> >= Relational operators: >

and ≥

= = != Relational operators: =

and ≠

5 & Bitwise AND

^ Bitwise XOR

| Bitwise OR

6 && Logical AND

|| Logical OR

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 6, June-2020 461

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

TABLE 2: EXPRESSION TREE FORMATION

Expression Algorithm

steps

Operand

stack

Operator

stack

Expression tree

a - b != d % (c + b) && a * d / b 1.1, 1.2, 2.1 a -

a - b != d % (c + b) && a * d / b 1.1, 1.2, 2.5.2 b ! =

a - b != d % (c + b) && a * d / b 1.1, 1.2, 2.5.1 d %

a - b != d % (c + b) && a * d / b 1.1, 1.2, 2.2.1 c (+

a - b != d % (c + b) && a * d / b 1.1, 1.2, 2.3,

2.4.2

b () &&

a - b != d % (c + b) && a * d / b 1.1, 1.2, 2.5.1 a *

a - b != d % (c + b) && a * d / b 1.1, 1.2, 2.5.3 d /

-
a

! =

-

a b

%

d
+

c

&&

b

! =

-

a b

%

d
+

c

&
&

b

*

a

&
& ! =

-

a b

%

d
+

c b

*
a

/

d

-

a b

%

d

!=

-

a b

%

d
+

c

!=

-

a b

%

d

!=

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 6, June-2020 462

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

a - b != d % (c + b) && a * d / b 1.1 b

5 CONCLUSION AND RECOMMENDATIONS
In this paper, we tried to show you how a given infix mathe-

matical expression is converted to an expression tree. The

algorithm developed is the first algorithm which changes a

mathematical expression (infix form) to an expression tree

directly with no aid of other forms like prefix and postfix forms.

Once a given expression is expressed in a binary tree form, it

can easily be converted to other forms of expression (prefix

and post fix notations) so that the final result of the expression

can easily be evaluated. Moreover, it can handle and solve the

problem in evaluating operator precedence in a given mathe-

matical expression. As this algorithm is the first attempt, it has

its own limitation. The algorithm is assumed to work for binary

operators which are operating on two operands. The other

limitation is that, the operators assumed in the expression are

all have associativity in the direction of left to right. Hence,

making this algorithm to be able to work for unary & ternary

operator types, and operators with associativity of right to left,

is a possible future work related with this study.

REFERENCES
[1] Adam Drozdek, Data Structures and Algorithms in C++ 2nd edition (USA:

Brooks/Cole, 2001).

[2] Ellis Horowitz, Sahni, Dinesh Mehta, Fundamentals of Data Structures in C++

(Galgotia, 2006).

[3] Erkki Makinen, Constructing a Binary Tree Efficiently from its Traversals, Uni-

versity of Tampere, Finland.

[4] E.W. Dijkstra, ALGOL Translation, Mathematics Centrum, Amsterdam, 1961.

[5] Juan Soulié, C++ Language Tutorial, cplusplus.com, 2008.

[6] Manoj C. Lohani, Upendra S. Aswal and Ramesh S. Rawat, “Reconstruction of a

Binary Search Tree from its Preorder Tree Traversal with the Unique Non-

recursive Approach”, Oriental Journal of Computer Science & Technology,

Vol. 4(1) , 217 - 219, 2011.

[7] Nishant Doshi, Tarun Sureja, Bhavesh Akbari, Hiren Savaliya, Viraj Daxini,

“Width of a Binary Tree”, International Journal of Computer Applica-

tions,Vol. 9, No.2, 41- 43, 2010.

[8] Nitin Arora, Pradeep Kumar Kaushik, Satendra Kumar, “Iterative Method for

Recreating a Binary Tree from its Traversals”, International Journal of Com-

puter Applications, Vol. 57, No.11, 6-13, 2012.

[9] Robert L. Kruse, Data Structures and Program Design in C++, (Prentice-Hall,

1999), 321- 401.

[10] Suri Pushpa, Prasad Vinod, “Binary Search Tree Balancing Methods: A Critical

Study”, International Journal of Computer Science and Network Security,

Vol.7, No.8, 237 – 243, 2007.

[11]The free encyclopedia, Wikipedia, available at

http://en.wikipedia.org/wiki/Shunting_yard_algorithm.

[12] Vineet Kumar Sharma, Adesh Kumar Pandey, Dr. V.K. Srivastava, “A New

Look to Traversal Algorithms Using Set Construct Data Structure”, Interna-

tional Journal on Computer Science and Engineering, Vol. 02, No. 05, 1445-

1448, 2010.

+

! =

-

a b

%

d
c b

*

a

/

d

b

&&

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Shunting_yard_algorithm

